Mark scheme - Carbonyl Compounds

Question		Answer/Indicative content	Marks	Guidance
1	a	F/aldehyde AND Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) \checkmark G/alkene/C=C AND Bromine/Br2 AND goes colourless/decolourised \checkmark G/ketone AND 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate \checkmark G/ketone AND Tollens' (reagent) AND no silver mirror/no change/no reaction \checkmark	$\begin{gathered} 4 \\ (\mathrm{AO} 2.3) \\ (\mathrm{AO} 3.3) \\ (\mathrm{AO} 3.3) \\ (\mathrm{AO} 3.3) \end{gathered}$	IGNORE use of $2,4-$ DNP with F ALLOW ammoniacal silver nitrate OR $\mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW black ppt OR grey ppt ALLOW bromine water/ $\mathrm{Br}_{2}(\mathrm{aq})$ ALLOW errors in spelling for 2,4-DNP ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW ammoniacal silver nitrate OR $\mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW black ppt OR grey ppt ALLOW alterative approach using acidified potassium dichromate for tests with F and/or G, with correct observations, alongside use of 2,4-DNP Examiner's Comments Candidates who found this question difficult often did not give a response that would identify all three of the functional groups (aldehyde, ketone and alkene). The use of Tollens' in identifying aldehydes was well demonstrated, however no reaction with Tollens' was less well demonstrated as a result for ketones.
	b	Mechanism Curly arrow from ${ }^{-} \mathrm{CN}$ to C atom of $\mathrm{C}=\mathrm{O} \checkmark$ Dipole shown on $\mathrm{C}=\mathrm{O}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{O}^{\delta-}$,	$\begin{gathered} 5 \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.5) \\ (\mathrm{AO} 2.5) \\ (\mathrm{AO} 2.5) \\ (\mathrm{AO} 1.1) \end{gathered}$	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of -CN OR CN- OR from minus sign on C of ${ }^{-} \mathrm{CN}$ ion (then lone pair on CN^{-}does not need to be shown) Curly arrow from $\mathrm{C}=\mathrm{O}$ bond must start from, OR be traced back to, any part of $\mathrm{C}=\mathrm{O}$ bond and go to O

	AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to O atom \checkmark Curly arrow from lone pair OR - charge on O^{-}of correct intermediate to $\mathrm{H}^{+} \checkmark$ \qquad Product 1 mark Name of mechanism 1 mark		ALLOW curly arrow to H atom of $\mathrm{H}_{2} \mathrm{O}$, i.e. IGNORE attempt to draw curly arrow showing breaking of $\mathrm{H}-\mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$ IGNORE lack of dipole on $\mathrm{H}_{2} \mathrm{O}$
	Heterolytic One (bonded) atom/O receives both/2 electrons \checkmark Fission Breaking of a covalent bond $\sqrt{ }$	$\begin{gathered} 2 \\ (A O 1.2) \end{gathered}$	ALLOW 2 electrons go to one (bonded) atom/O DO NOT ALLOW both pairs of electrons go to O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element or molecule ALLOW π bond in $\mathrm{C}=\mathrm{O}$ breaks IGNORE breaking of $\mathrm{C}=\mathrm{O}$ bond (no reference to only one bond breaking) 'Bond breaking' is not sufficient (no reference to covalent) Examiner's Comments Candidates often referred to NaCN and HCN in their responses. Candidates who identified the correct bond breaking often then incorrectly wrote that the oxygen atom gained the lone pair of electrons.
	Total	11	

6.1.2 Carbonyl Compounds

2			$\begin{gathered} 5 \\ (\mathrm{AO} 2.5 \times 5) \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW HBr
		Total	5	
3	a	Marks for each correct structure/reagent shown below	5	ANNOTATE WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous For reaction with excess $\mathrm{H}_{2} / \mathrm{Ni}$ IGNORE hydrogenation of benzene ring i.e. the following structure scores two marks ALLOW KCN/H ${ }^{+}$ ALLOW HCN ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4}$ or HNO_{3} or HCl for H^{+} Examiner's Comments This question proved difficult and although the majority of candidates scored in some parts, only the very best responses secured all five marks. More detailed feedback is discussed with Exemplar 8.

6.1.2 Carbonyl Compounds

(2)

				considered when drawing reaction products and would minimise errors, such as those demonstrated in the reduction product.
b	i	Bromine/ Br_{2} AND goes colourless/decolourised	1	Note: both reagent and observation are required ALLOW bromine water/ $\mathrm{Br}_{2}(\mathrm{aq})$ Examiner's Comments Almost all candidates were able to correctly describe the use of bromine as a test for an unsaturated chain.
	ii	Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid)	1	Note: both reagent and observation are required for the mark. ALLOW ammoniacal silver nitrate OR $\mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW black ppt OR grey ppt Examiner's Comments Almost all candidates were able to correctly describe the use of Tollens' reagent as a test for an aldehyde functional group.
	iii	(Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate \checkmark Take melting point (of crystals) \checkmark Compare to known values/database \checkmark	3	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate Mark second and third points independently of response for first marking point DO NOT ALLOW $2^{\text {nd }}$ and $3^{\text {rd }}$ marks for taking and comparing boiling points OR chromatograms Examiner's Comments The use of 2,4-dinitrophenylhydrazine as a test for the carbonyl group is well known by candidates at this level. The majority of the cohort correctly identified this test and the subsequent analysis of the melting point of the products as a method of identifying each compound. Lower ability candidate responses made reference to analysis of the boiling points of the cinnamaldehyde and methylcinnamaldehyde as a means of identification.

6.1.2 Carbonyl Compounds

6.1.2 Carbonyl Compounds

b		2,4-dinitrophenylhydrazine AND Orange/yellow/red precipitate \checkmark	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
c	i	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+ \\ & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \end{aligned}$ $\mathrm{CH}_{3} \mathrm{COONa} \downarrow$ Rest of equation correct \checkmark OR $\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}+\mathrm{NaOH} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOONa}+ \\ & \mathrm{CH}_{3} \mathrm{OH} \\ & \\ & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOONa} \checkmark \end{aligned}$ $\text { Rest of equation correct } \sqrt{ }$	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products (question requires structures of products to be shown)
	ii	Reagent and observation $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ OR acidified (potassium/sodium) dichromate AND Orange to green (with $\mathrm{CH}_{3} \mathrm{OH}$) \checkmark Equation $\mathrm{CH}_{3} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{CH}_{3} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \checkmark$	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
	iii	${ }^{13} \mathrm{C}$ NMR (1 mark) (It is) not possible to identify (the esters) with ${ }^{13} \mathrm{C}$ NMR AND (both) spectra would contain four peaks (with similar chemical shifts) \checkmark ${ }^{1} \mathrm{H}$ NMR (2 marks) (It is) possible to identify (the esters) with ${ }^{1} \mathrm{H}$ NMR (${ }^{1} \mathrm{H}$ NMR spectrum of) $\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$ has a singlet/peak between 2.0-3.0 (ppm)	3	ALLOW 'same number of peaks' in place of 'four peaks' ALLOW any value or range of values within 2.0-3.0

6.1.2 Carbonyl Compounds

		(${ }^{1} \mathrm{H}$ NMR spectrum of) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$ has a singlet/peak between 3.0-4.3 (ppm) All three correct statements $\sqrt{ } \checkmark$ Any two correct statements \checkmark		ALLOW any value or range of values within 3.0-4.3
	d	Possible structures for ketone (2 marks) All three correct $\checkmark \checkmark$ Any two correct $\sqrt{ }$ Aldehyde (3 marks) Peak at (ס) 1.2 shows HC-R AND No H on adjacent C atom as peak is singlet \checkmark Peak at ($\overline{\text {) }} 9.6$ shows $\mathrm{H}-\mathrm{C}=\mathrm{O}$ AND No H on adjacent C atom as peak is singlet \checkmark OR (2,2-)dimethylpropanal $\sqrt{ }$	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of ketones
		Total	17	
		 curly arrow from H^{-}to $\mathrm{C}\left({ }^{(\delta+}\right)$ of correct $\mathrm{C}=\mathrm{O}$ group	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous First curly arrow must come from either a lone pair on H or negative charge on H IF aldehyde reduced OR both carbonyls reduced

6.1.2 Carbonyl Compounds

			dipole correct AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O}^{\left({ }^{\delta-}\right)}$ correct intermediate with negative charge on O correct product		DO NOT AWARD first mark (second, third and fourth marks can be awarded ECF) IGNORE lack of $\mathrm{C}-\mathrm{H}$ if entirely skeletal IGNORE curly arrows in second stage Apply ecf to error in structure e.g. CH_{2} missing from the chain or $-\mathrm{COOH} /-\mathrm{COH}$ instead of $-\mathrm{CHO}$ IGNORE other products Examiner's Comments Good candidates had no problem with this reaction mechanism. Some did not read the question carefully and reduced the wrong carbonyl group. Other errors included an incorrect starting position for the first curly arrow, the omission of a CH_{2} unit from the carbon chain or changing the aldehyde functional group to a carboxyl group.
			Total	4	
8	a		F-K clearly identified Compound F:	6	ANNOTATE ANSWER WITH TICKS AND CROSSES
			ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous		
			 Compound G: Compounds H and I :		IGNORE names
			\boldsymbol{H} and \mathbf{I} can be identified either way round		

6.1.2 Carbonyl Compounds

		Compound J: Compound K:		
	b	(Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate	3	NOTE: (b) is marked completely independently of (a) ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
		Take melting point of crystals Compare to known values		Mark second and third points independently of response for first marking point DO NOT ALLOW 2nd and 3rd marks for taking and comparing boiling points OR chromatograms
		Total	9	
9	a		1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		aqueous acid $\mathrm{OR} \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$	1	ALLOW $\mathrm{H}^{+}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{HCl}(\mathrm{aq})$
		Angle $\mathrm{a}=109.5^{\circ}$ Angle $b=104.5^{\circ}$ Angle $\mathrm{c}=120^{\circ}$ Two correct All three correct	2	ALLOW 109-110 ALLOW 104-105 ${ }^{\circ}$
	b	It is an electron pair donor OR donates a lone pair	1	

6.1.2 Carbonyl Compounds

Curly arrow from HO^{-}to carbon atom of $\mathrm{C}=\mathrm{O}$ bond
Correct dipole AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O}^{\text {б- }}$
ii

Curly arrow from negative charge on oxygen to C -
O bond (to reform carbonyl π-bond)

Curly arrow from C-O single bond to oxygen atom (to form methoxide ion)

Curly arrow must come from lone pair on O of $\mathrm{HO}^{-} \mathbf{O R} \mathrm{OH}^{-} \mathrm{OR}$ from minus sign on HO^{-}ion (No need to show lone pair if curly arrow came from negative charge on O)

4

IGNORE dipole on $\mathrm{C}-\mathrm{O}$ single bond

Curly arrow must come from lone pair on O
OR from minus sign on O^{-}ion
(No need to show lone pair if curly arrow came from negative charge on O)

ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

ALLOW $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ OR $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ OR $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for dichromate
ALLOW H ${ }^{+}$OR (conc.) sulfuric acid for "acidified"

ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

6.1.2 Carbonyl Compounds

				ALLOW for second stage IF $\mathrm{H}_{2} \mathrm{O}$ is used it MUST show the curly arrow from the intermediate to $\mathrm{H}^{\delta+}$ in $\mathrm{H}_{2} \mathrm{O}$ AND from the $\mathrm{O}-\mathrm{H}$ bond to the O IGNORE product IGNORE stereochemistry of intermediate
	ii	$1 s^{2} 2 s^{2} 2 p^{6}$	2	IGNORE inner electron shells for both ions Three different symbols required to identify electrons from different elements DO NOT ALLOW [Ne] OR [He] $2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
		Total	7	

