Mark scheme – Carbonyl Compounds

Question		on	Answer/Indicative content	Marks	Guidance
1	а		F/aldehyde AND Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) √ G/alkene/C=C AND Bromine/Br2 AND goes colourless/decolourised √ G/ketone AND 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate √ G/ketone AND Tollens' (reagent) AND no silver mirror/no change/no reaction √	4 (AO2.3) (AO3.3) (AO3.3) (AO3.3)	IGNORE use of 2,4-DNP with F ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt ALLOW bromine water/ Br ₂ (aq) ALLOW errors in spelling for 2,4-DNP ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt ALLOW alterative approach using acidified potassium dichromate for tests with F and/or G, with correct observations, alongside use of 2,4-DNP Examiner's Comments Candidates who found this question difficult often did not give a response that would identify all three of the functional groups (aldehyde, ketone and alkene). The use of Tollens' in identifying aldehydes was well demonstrated, however no reaction with Tollens' was less well demonstrated as a result for ketones.
	b	i	Mechanism 3 marks $\begin{array}{c} CH_3 & H\\ H_3C & CH & CH\\ H_2 & CH & CH\\ H_2 & CH\\ CH & CH$	5 (AO1.2) (AO1.2) (AO2.5) (AO2.5) (AO2.5) (AO1.1)	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of -CN OR CN- OR from minus sign on C of -CN ion (then lone pair on CN- does not need to be shown) Curly arrow from C=O bond must start from, OR be traced back to, any part of C=O bond and go to O

Cinnamaldehyde was the starting point for this flowchart of reactions.

The most frequently scored mark was correct identification of the reagents required for the formation of the hydroxynitrile. This response uses NaCN/H⁺. Other candidates used HCN which was also acceptable.

The flowchart shows two different reactions of this hydroxynitrile. The first is the reaction with excess hydrogen in the presence of Ni. Most candidates scored one mark for their product. As in this exemplar, the double bond was often reacted to form a saturated chain. Some candidates identified that the CN group would also react but instead of writing CH₂NH₂ they replaced the CN group with just NH₂, effectivity removing a carbon atom from the chain. The second reaction of the hydroxynitrile is acid hydrolysis of the CN group. This response identifies the correct carboxylic acid. However, this reaction seemed unfamiliar to many candidates and a range of incorrect responses were frequently seen.

The final reaction is the reduction of cinnamaldehyde with NaBH₄. Many candidates recognised this reaction, but as can be seen in this response the alcohol group is shown on the incorrect carbon atom. This was a common error.

Candidates are advised to number carbon atoms present if provided with a complex structure, such as cinnamaldehyde. Numbering will ensure that each carbon is

				considered when drawing reaction products and would minimise errors, such as those demonstrated in the reduction product.
b	i	Bromine/ Br₂ AND goes colourless/decolourised √	1	 Note: both reagent and observation are required ALLOW bromine water/ Br₂(aq) Examiner's Comments Almost all candidates were able to correctly describe the use of bromine as a test for an unsaturated chain.
	ï	Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) √	1	 Note: both reagent and observation are required for the mark. ALLOW ammoniacal silver nitrate OR Ag⁺/NH₃ ALLOW black ppt OR grey ppt Examiner's Comments Almost all candidates were able to correctly describe the use of Tollens' reagent as a test for an aldehyde functional group.
		(Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate √ Take melting point (of crystals) √ Compare to known values/database √	3	 ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate Mark second and third points independently of response for first marking point DO NOT ALLOW 2nd and 3rd marks for taking and comparing boiling points OR chromatograms Examiner's Comments The use of 2,4-dinitrophenylhydrazine as a test for the carbonyl group is well known by candidates at this level. The majority of the cohort correctly identified this test and the subsequent analysis of the melting point of the products as a method of identifying each compound. Lower ability candidate responses made reference to analysis of the boiling points of the cinnamaldehyde and methylcinnamaldehyde as a means of identification.

				Total	10	
				Starting material from reduction reaction ↓ ↓ Reagent for reduction NaBH4 √		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Watch for missing methyl groups IGNORE H ⁺ / acid or H ₂ O or ethanol ALLOW sodium borohydride OR sodium tetrahydridoborate
				Draduct from recetion with NoDr/ULCO	_	ALLOW LiAIH4
				Br Structural isomers		ALLOW in either order Examiner Comments There were many good answers to this synthesis question with about 40% of the cohort scoring full marks. The structure of the carbonyl and the reagent needed for reduction were well known by a majority of candidates however some reacted the alcohol group with sodium bromide to obtain $-O^-Na+$ for the second structure. Weaker candidates did not realise that an alcohol could be dehydrated and thus failed to be awarded the final two marks.
		i	ii	3-methylcyclohexanol √	1	ALLOW 3-methylcyclohexan-1-ol ALLOW 1-methylcyclohexan-3-ol IGNORE lack of hyphens, or addition of commas Examiner Comments Just over half of candidates managed to name the structure as 3-methylcyclohexanol. The most common errors included 3-methylphenol, 3-methylcyclichexanol and 3-methylhexanol.
				Total	6	
Į	5	i	i	curly arrow from ⁻ CN to carbon atom of C–C/ bond \checkmark Dipole shown on C–C/ bond, C ^{δ+} and C/ ^{δ-} , AND curly arrow from C–C/ bond to C/ atom \checkmark	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of ~CN OR CN~ OR from minus sign on C of ~CN ion (then lone pair on CN ⁻ does not need to be shown)

		e.g. HC/ AND H ₂ O H ₂ SO ₄ AND H ₂ O Examiner Comments Although many candidates were able to provide the structure of methanal as the starting material for this synthesis, the structures of chloromethanol, bromomethanol and iodomethanol were accepted as suitable alternatives. It should be noted that hydrolysis is carried out using aqueous acid and that dilute acid is not a suitable alternative.
Explanation Nitrogen electron pair OR nitrogen lone pair AND accepts a proton / $H^+ \checkmark$ Structure of salt H	2	IGNORE NH ₂ group donates electron pair ALLOW nitrogen donates an electron pair to H ⁺ DO NOT ALLOW nitrogen donates lone pair to acid IGNORE comments about the O in the –OH group Compound H is a base is not sufficient (role of lone pair required) DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H ⁺ required) ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW H H C C H H H IF charges are shown both need to be present ALLOW charge either on N atom or NH ₃ ⁺ IF displayed then + charge must be on the nitrogen Examiner Comments Only 20% of candidates were awarded both marks for this question. The commonest error was a failure to state that the N atom has a lone pair of electrons that can gain a proton. Answers stating that amines accept protons or that a salt is produced when an acid reacts with a base were not credited. Where a full displayed structure is given the positive charge must be shown on the nitrogen atom, although –NH ₃ ⁺ is acceptable. As the question required the formula of the salt, the C/ ⁻ had to be included.

		iv	$- \cdots - 0 - \bigcup_{H} 0 - \bigcup_{Q} - \bigcup_{H} 0$ Ester link \checkmark Rest of structure \checkmark (polymer J is biodegradable because) the ester / ester bond / ester group / polyester can be hydrolysed \checkmark	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW more than two repeat units for second marking point. 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE brackets IGNORE <i>n</i> Broken down by water is not sufficient IGNORE references to photodegradable Examiner Comments The most common mark for this question was two out of the three marks available, with candidates giving a correct structure of the polymer but failing to express that the polymer was biodegradable due the ability of the ester functional group to undergo hydrolysis.
			Total	11	
6	а	i	Reagent and observation sodium carbonate AND Fizzing/effervescence/bubbling √ Equation Correctly balanced equation √	2	Note: both reagent and observation are required for first mark ALLOW name or formula for any suitable carbonate e.g NaHCO ₃ , potassium carbonate etc.
			e.g. 2RCOOH + Na ₂ CO ₃ \rightarrow 2RCOONa + CO ₂ + H ₂ O		ALLOW reagent from equation if not stated elsewhere
			Reagent and observation Tollens' (reagent) AND Silver (mirror) √		Note: both reagent and observation are required for first mark ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃
		ii		2	ALLOW H ⁺ /Cr ₂ O ₇ ²⁻ OR acidified (potassium/sodium) dichromate AND

b		2,4−dinitrophenylhydrazine AND Orange/yellow/red precipitate √	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
с	i	CH ₃ COOC(CH ₃) ₃ + NaOH → CH ₃ COONa + (CH ₃) ₃ COH CH ₃ COONa \checkmark Rest of equation correct \checkmark OR (CH ₃) ₃ CCOOCH ₃ + NaOH → (CH ₃) ₃ CCOONa + CH ₃ OH (CH ₃) ₃ CCOONa \checkmark Rest of equation correct \checkmark	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products (question requires structures of products to be shown)
	11	Reagent and observationH+/Cr2O72- OR acidified (potassium/sodium)dichromateANDOrange to green (with CH3OH) √EquationCH3OH + [O] → HCHO + H2OORCH3OH + 2[O] → HCOOH + H2O √	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
	iii	 ¹³C NMR (1 mark) (It is) not possible to identify (the esters) with ¹³C NMR AND (both) spectra would contain four peaks (with similar chemical shifts) √ ¹H NMR (2 marks) (It is) possible to identify (the esters) with ¹H NMR (¹H NMR spectrum of) CH₃COOC(CH₃)₃ has a singlet/peak between 2.0–3.0 (ppm) 	3	ALLOW 'same number of peaks' in place of 'four peaks' ALLOW any value or range of values within 2.0-3.0

		(¹ H NMR spectrum of) (CH ₃) ₃ CCOOCH ₃ has a singlet/peak between 3.0−4.3 (ppm) All three correct statements√√ Any two correct statements √		ALLOW any value or range of values within 3.0-4.3
	d	Possible structures for ketone (2 marks) $CH_3 - C - CH_2CH_2CH_3$ $CH_3 - C - CH_2CH_3$ $CH_3 - C - CH_2CH_3$ $CH_3 - C - CH_2CH_3$ $CH_3 - C - CH_2CH_3$ All three correct \checkmark Any two correct \checkmark Any two correct \checkmark Aldehyde (3 marks) Peak at (δ) 1.2 shows HC-R AND No H on adjacent C atom as peak is singlet \checkmark Peak at (δ) 9.6 shows H-C=O AND No H on adjacent C atom as peak is singlet \checkmark $H_3C - C + C + C + H_3$ $H_3C - C + C + H_3$ OR (2,2-)dimethylpropanal \checkmark	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of ketones
		Total	17	
7		$H \overset{\bullet}{\underset{O}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset$	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous First curly arrow must come from either a lone pair on H or negative charge on H IF aldehyde reduced OR both carbonyls reduced

		dipole correct AND curly arrow from C=O bond to $O(^{\delta^{-}})$ \checkmark \downarrow_{O}^{H} \downarrow_{O}^{O} correct intermediate with negative charge on O \checkmark \bigvee_{OH}		DO NOT AWARD first mark (second, third and fourth marks can be awarded ECF) IGNORE lack of C—H if entirely skeletal IGNORE curly arrows in second stage Apply ecf to error in structure e.g. CH ₂ missing from the chain or —COOH / -COH instead of —CHO
		correct product ✓		IGNORE other products
				Examiner's Comments
				Good candidates had no problem with this reaction mechanism. Some did not read the question carefully and reduced the wrong carbonyl group. Other errors included an incorrect starting position for the first curly arrow, the omission of a CH ₂ unit from the carbon chain or changing the aldehyde functional group to a carboxyl group.
		Total	4	
8	а	F–K clearly identified	6	ANNOTATE ANSWER WITH TICKS AND CROSSES
		Compound F:		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		CH ₂ CH ₃ H H		IGNORE names
		Compound G:		
		н н н н н—с—с—с—он н н н н		
		Compounds H and I:		H and I can be identified either way round

			$H_{3}C \xrightarrow{CH_{2}CH_{3}} H \xrightarrow{CH_{2}CH_{3}} HO^{WWWC} CH_{3}$		
			Compound J:		
			Compound K:		
	b			3	NOTE: (b) is marked completely independently of (a)
			(Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate		ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
			Take melting point of crystals		Mark second and third points independently of response for first marking point
			Compare to known values		
					DO NOT ALLOW 2nd and 3rd marks for taking and comparing boiling points OR chromatograms
			Total	9	
9	а	i	ОН - СН ₃	1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		ii	aqueous acid OR H⁺ / H₂O	1	ALLOW H⁺(aq) / H₂SO₄(aq) / HC <i>I</i> (aq)
			Angle a = 109.5°		
			Angle b = 104.5°		ALLOW 109–110°
		iii	Angle c = 120°	2	ALLOW 104–105°
			Two correct All three correct		
	b	i	It is an electron pair donor OR donates a lone pair	1	

